
EXAMINING THE VULNERABILITIES OF AN APACHE WEB
SERVER

Zach Broe CJ Cipriano Kyle Davidson
 Straight Outta Tally Straight Outta Tally Straight Outta Tally
 Florida State University Florida State University Florida State University
 zb14b@my.fsu.edu cjc12b@my.fsu.edu kmd11x@my.fsu.edu

 Sean English Ayla Pardo
 Straight Outta Tally Straight Outta Tally
 Florida State University Florida State University

 sre11b@my.fsu.edu amp12h@my.fsu.edu

Abstract
With security breaches becoming more frequent via web applications, it is important to protect
data and information from attacks aimed towards affecting confidentiality, integrity and
availability. The purpose of this project is to explore the assessment of an Apache Web Server and
exploit its weaknesses in order to gain knowledge on protecting website applications against
various attacks. The research gathered suggests specific methods of prevention, detection,
identification, and useful countermeasures. The objectives of Part A and Part B is to successfully
communicate with web servers and issue commands in order to hack and discover vulnerabilities
within their websites. The knowledge gained from these two experiments were that it is imperative
to secure files, address user mistakes, and fix any program errors before granting users access to
information from a website.

Keywords: Apache, vulnerability, web server, LAMP, attacks, security, users, Linux

Introduction

Exploitation of client-side server vulnerabilities has increased dramatically over the past twenty years, as
the Web has evolved from a simple platform for academic communication and interaction to a worldwide network
interconnecting billions of people to information (Miranda et al. 2012; Lima 2012). The Internet is comprised of a
series of interrelated servers (client-side and host-based servers) linked by way of comprehensive networks which
store information on remote computers for the purpose of making information readily accessible to people all of the
world for their personal use. Due to the increased dependence and evolution of the web since the mid-1990s,
client-side server vulnerabilities, in particular, have been a source for exploitation by nefarious users of the Internet.
Complex toolkits and scanners have been made available to users principally over the last two (2) decades as a
means to inject malicious software onto targeted systems to extract sensitive information for material use (Qassrawi
et al 2011; Zhang 2011).

A server is a remote system which hosts and provides information requested by client-based machines and
transmits the requested material over a series of network and Internet protocols. The most widely used Internet
Protocol (IP) is the transmission control Internet Protocol (TCP/IP) which is an arrangement of protocols used as the
primary method of communication between systems worldwide to link client and host servers to the web. The
communication of information and data across global networks is made possible by Internet protocols. The
transmission control protocol is responsible for establishing what is generally called “packets” of information which
are transferred through an internet protocol to establish a path for the information packets to arrive at the requested
destination to the address of the client-server. The requested information is then reconstructed in its original format
and assembled in a chronological way that can be easily understood by the user of the server. This is what makes

communication between servers possible and how an abundance of information is transmitted across multiple
networks at a time.

Why use LAMP?

The concept of server communication across networks is important as it encompasses the basis of
server-side scripting attacks, which are utilized by individuals who attempt to exploit vulnerabilities on a webserver.
The increased use of interactive applications on the web is made possible by way of a concept called web
application architecture, which generally incorporates various programming languages and software for web
application development such as Django or LAMP. The most widely used web development package available for
use is what is known as LAMP. Produced for commercial use in 1996, LAMP includes all the software necessary to
construct a web application as it integrates an operating system (Linux), server software (Apache), a database
language (MySQL), and a web-based programming/scripting language which can be PHP, Python, or Perl
(Dennison 2005). The LAMP software package is used as a tool to create web applications on more than two-thirds
of the web today and its use continues to grow exponentially (Dennison 2005).

Due to its global popularity, exploitations of LAMP-based servers are becoming more prevalent.
Server-side vulnerabilities have increased due to the complex tools and scripting attacks created, and perpetrated by
unruly users of the Internet (Li et al. 2014; Xue 2014). Server-side vulnerabilities generally are caused by a lack of
security pertaining to the authentication and authorization process of a particular application or resource on a server
which can put sensitive data and/or information at serious risk of a breach of confidentiality and integrity (Li et al.
2014; Xue 2014). Server-side scripting attacks can exploit server content in a variety of ways including web-based
applications, system resources, and network bandwidth as well (Ho, 2015). The two types of server-side scripting
attacks that are utilized to penetrate possible vulnerabilities on a server include SQL injection and cross-site
scripting threats (Li et al. 2014, Xue 2014).

Purpose

The purpose of this paper is to assess the impact of server-side vulnerabilities by examining common
threats such as SQL injection methodologies and cross-site scripting attacks, along with identity spoofing and
common denial of service (DoS) attacks with an in-depth analysis of a variety of ways to detect and prevent such
attacks. In addition, this paper will explore how to identify such an attack with suggested countermeasures including
software scanning and active monitoring tools. Furthermore, the results, findings, solutions, and countermeasures
regarding project part A will be actively examined and discussed as a supplement to illustrate various server-side
vulnerabilities that can be exploited if active monitoring and detection fail to identify the vulnerability.

Literature Review

Introduction

The purpose of the literature review is to introduce the research gathered by the team. The selected articles were
chosen to help the team analyze their findings during Part A and B of the project. The articles helped the team
understand the importance of web security and how easy it is to exploit a web application’s vulnerabilities. Not only
can usability be negatively affected, but a company’s assets may also become compromised. Therefore, learning
about preventing and detecting attacks, and countermeasures will help defend users against security intrusions.

Why Web Security is Important?

Researchers Li and Xue demonstrate the importance of web security by stating that since web applications aim to
deliver critical services, they naturally become security targets. A corrupted web application can result in
confidentiality, integrity and availability losses, which negatively affect business operations (Li & Xue, 2013). The

carefully selected articles in this research paper will help the team (Straight Outta Tally) by providing background
knowledge before they produce their own analysis and references.

Furthermore, in order for a user to gain access to a web application, there needs to be a series of servers that
communicate with one another. However, servers can become compromised leaving applications vulnerable and
susceptible to malicious attacks (Ho, 2015). Since it is almost nearly impossible to have an application that can
never be attacked, it is important to learn about prevention, detection and reaction methods.

Attacks

According to Information Technology lecturers Gupta and Sharma, web applications are being attacked at higher
rates due to “new technologies, HTML tags and JavaScript” (Gupta & Sharma, 2012). The two main attacks on the
web are Cross-Site Scripting (XSS) and Denial-Of-Service (DoS). The main purpose of focusing on XSS and DoS is
to learn about how these vulnerabilities function and detection/prevention methods in order to thwart these attacks.
When conducting a XSS attack, a user’s web browser resources are obtained, which can include cookies and log in
credentials (Gupta & Sharma, 2012). A Dos attack affects the availability to access web and can threaten both
routers and hosts (Khanna et al., 2012). Since server attacks are very common it is important to distinguish the
difference between them and to know when a operating system (in this case a Linux machine) is being attacked.
According to Burghate and Mookhey (2010) in order to detect a Cross-Site Scripting attack you usually start by
testing in order to determine if the server is vulnerable. This is normally done by sending out a basic format tag
(,<I>,<u>) or with some minor script. This is all easily detected with the right security precautions; however
more clever attackers will attempt to issue these tags in their hex value. This requires special detection settings in
order to avoid having these attacks go unnoticed (Burghate & Mookhey, 2010).

Thatcher Development Software (2012) was able to detect DoS attacks by referencing back to first hand experience
when it happened within their company. Aside from the obvious signs of a DoS attack (slow or complete loss of
connectivity), this article cover methods like checking log data, IP address table analyses and even looking over
graphics data from analysis software (Thatcher, 2012).

Prevention

The best way to defend against attacks is to prevent them all together. While a lot of attacks can be avoided by
simply having a strong security policy in place and ensuring all members abide by it, others require a more direct
approach. Detecting and stopping attacks early on before they can do serious damage is the best way to prevent
many attacks, like the ones we discuss here. The reason for this is because it is almost impossible to cover all
weaknesses all of the time. It is much more practical to protect as much as you can and to keep a careful watch over
areas that you cannot. Furthermore, another way to prevent attacks is to define them and understand how they work.

Major Attacks

While it is always helpful to educate oneself on the potential risks and threats that the world of malicious software
imposes, it is equally if not more imperative to be able to protect yourself against it. Today, web applications are
being attacked at a higher rate due to new advances within HTML tags and JavaScript (Gupta & Sharma, 2012).
Mainly, there are 2 major types of attacks being abused across the web: Cross-Site Scripting (XSS) and
Denial-Of-Service (DoS).

How Do They Work?

With Cross-Site Scripting, attackers are able to inject malicious JavaScript into a web application, which would
enable them to bypass access-controls. This can lead to the hacking of sensitive data such as cookies, and even

session ID’s. While there are two main types of web attacks, XSS and DoS, there are also different forms of each,
respectively. The two types of XSS attacks are commonly known as stored and reflected , reflected being the most
common used today (Kals, 2010). A reflected attack is when an attacker injects malicious code through a webform
with a single HTTP request, whereas a stored attack, being more dangerous, occurs when malicious data is stored by
a web application and is displayed under the permission of the application.

Server-side Scripting Attacks

Server-side scripting is a practice used most commonly by web developers to automate and execute simple requests
from client systems with the assistance of a programming language such as Hypertext Preprocessor (PHP)
(Brookshear et al, 2015; Brylow 2015). The popularity of using server-side languages to create dynamic webpages
has increased significantly in recent years, however, in effect, vulnerabilities on the server-side of the server-client
interactive process has proportionally increased as well with attack methods such as cross-site scripting (XSS) and
cookie-stealing. Cross-site scripting attacks generally consist of a type of input validation vulnerability originating
from a trustworthy web application in which malicious code is sent and executed effectively giving an attacker the
ability to retrieve sensitive data, particularly cookies, and perform session hijacking techniques on unsuspecting
users (Li & Zue, 2014). Session hijacking attacks primarily encompass the attempt to gain access to a user’s session
token generally by using packet sniffer software to acquire private information originating from cookies on web
browsers (Li & Zue, 2014).

Part B of this paper will analyze and discuss how server-side scripting attacks, particularly cross-site scripting and
session hijacking using information attained from cookies, occurs, with direct instances originating from the
assignment relating to this paper, which consisted of our group managing a session hijacking by cross-site scripting
and cookie-stealing. In addition, a discussion relating to other academic papers and a detailed step-by-step overview
of the rationale, logic, and tools used to discover the vulnerability of part B relating to this paper. Furthermore, a
discussion pertaining to the results of part B will be presented in a detailed manner accompanied by elaborating on
the importance of our findings and how we can use what has been learned from this project in real-world
applications in the future.

Denial-Of-Service attacks are a concern for the reliability of the internet as a whole. According to Adaptive Selective
Verification: An Efficient Adaptive Countermeasure to Thwart DoS Attacks , Denial-Of-Service attacks can occur at
all levels of the protocol stack — that is, the entirety of the modularity that is a network, including, but not limited
to, routers and hosts. Denial-Of-Service attacks take aim at scarce resources across the net, such as CPU usage, disk
space, and memory (Khana 2012). The attack comes from an overflow of spoof requests to a network or server from
a single internet connection in an attempt to exhaust the resources. The overwhelming flow of requests floods the
bandwidth of a web application rendering it useless.

Detection

There are many kinds of attacks that can compromise a system. It is very important to be able to detect these attacks
in a timely manner to avoid serious damage. Every attack has a few key signs that can help detect and identify them.
For example, a cross-site scripting attack is where an attacker tries to inject code into a web application in order to
carry out some hostel action. This malicious script can be injected in all client side code like HTML, JavaScript,
PHP, CSS and more. With this in mind we can set up our server to alert us when it suspects someone is trying to
inject some code. To start we can look for signs that an attacker is testing your system to see if it vulnerable. A good
method for attackers to do this is by issuing a series of formatting tags like , and <u>. This will tell the attacker
if your system is open to CSS. Once they know the system will accept CSS tags, or if they simply choose to attack
without testing, they are likely to issue the <script> tag to try and incorporate some form of hostel code. To make
things even more challenging, an attacker may issue these tags in their hex values to avoid obvious detection. So

when setting up our server we can set it so notify us when these characters or their hex equivalents are issued to the
server (Thatcher, 2012).

SQL Injections

 The same kind of technique can be applied to detecting attempted SQL injections, but with some other things to
keep in mind. SQL injections can be issued, not only by an input field but also through the fields of a cookie. With
this in mind it is a good idea to check all inputs from a user and not just field inputs. The single quote character, “ ‘
“, and the double-dash “—“, are both used for comments. These are commonly used to slip SQL injections in under
the radar, and are prime targets for detecting this kind of attack. Another common character to watch for is the
equals sign, “=”, because it is used to carry though most user inputs. Much like with CSS, more clever attackers will
also attempt to issue these characters by their hex value. Also like before it is possible to set up your server to watch
for these characters and thusly alert you to possible attacks. The disadvantage to this method is that there it is very
likely to produce a fair amount of false positives as occasionally these are valid inputs from input fields or cookies.
In order to fix this problem you may have to adjust your scan to better fit your specific server and web application
(Thatcher, 2012).

Denial-of-Service Attack

Another potential threat to a server like this is a Denial of Service attack (DoS). In this attack, the aggressor attempts
to reduce the availability of a server or web application by overwhelming it with requests. When the server becomes
overloaded, it stops valid users from being able to use the webpage or web application. Luckily, this type of attack is
relatively easy to detect. Some of the rather obvious signs of a DoS attack include a sudden drop in connection speed
or a loss of connection all together (Gupta & Sharma, 2012). These are the most obvious signs because they are the
intended results of the attacker. Though if we want to look a little deeper, we can find signs to confirm that our
system is under attack, as opposed to just having connectivity issues.

Detection of Attacks

Comparison Graphs

To start off, a simple way to analyze discrete data is to use network statistics software. There is a wide range of these
programs on the market, ranging in price from free to thousands of dollars. For our purposes, many of the free
programs will work just fine. The main function we need is for the software to display our server data graphically to
make it easier to read. What this will allow us to do is to look for drastic spikes in requests coming from a particular
source. On a graph for a normal non-interrupted site, you will see a relatively uniform pattern of page views and
requests. The graph for a server under attack (Figure 2)will normally show a dramatic spike far exceeding normal
traffic.

Figure 1 Graph of a Server not Under Attack (Thatcher, 2016)

Figure 2 Graph of a Server Under Attack (Thatcher, 2016)

Log Files

Another simple step we can use to detect an attack is to check the servers log file. A normal log file will show the
time and date of a request and some basic information like the IP address, the port accessed, and the application the
request was sent to. A “healthy” log life will have a variety of IP addresses and application accessed over a
dispersed amount of time. The log of a server under attack however will show a large number of requests, all within
a very short time of each other, and all trying to access the same application. This shows that someone is attempting
to flood that application (Thatcher, 2012).

Figure 3 Healthy Log (Thatcher, 2016)

Figure 4 Unhealthy Log (Thatcher, 2016)

Countermeasures

“The best offence is a good defense” — this is absolutely the name of the game when it comes to countermeasures
for aggressive web hackers. Usually in today’s world, by the time an intrusion is initially detected, it is already too
late. With this in mind, getting ahead of the game is the best, and almost the only chance a person or company has at
keeping data secure.

Addressing Vulnerabilities

Taking a look Cross-Site Scripting prevention, the first countermeasure is to address your vulnerability. There are
multiple ways to address one’s vulnerability to XSS, the two main processes being static and dynamic testing. Static
testing strictly refers to source code analysis, used to selectively identify any problems blatantly used in the code.
Dynamic testing is a more aggressive form of vulnerability check — where known XSS attacks are used against web
applications to test for holes in the system (Gupta & Sharma, 2012).

Firewall

After testing, or even prior to a web application’s launch, a firewall needs to be set up on the server side, as well as
the client side, in order protect the users of the application. The firewall is to be located on a security gateway
between the client and server, in order to provide checks. For the server side, According to Gupta & Sharma, 2012 ,
there are browser side add-ons or built-ins that allow the browser to deny access to a script that it deems malicious.
These browser tools are known as Browser-Enforced Embedded Policies, or BEEP for short, and are required to
work collaboratively with the server.

XSS

XSS countermeasures are slightly different for the client side. Software, such as Noxes, is used in order to alert the
user about an unknown website, and allow or deny a connection. User defined whitelist and blacklist sites are also
available for use through such programs (Gupta & Sharma, 2012). While usually necessary and definitely useful, the
countermeasures to XSS often come with a toll. Server side techniques hold a large overhead, whereas client side
ends up putting more pressure on browsing and the experience, causing a less than optimal time to surf the web.

DoS

DoS attacks are attacks used to deny content to its intended user. The process of a countermeasure is a little more
straightforward than that of XSS attacks. The first step, more obviously, is to understand that you are currently being
attacked via DoS. This initially may not be as obvious as you think. Finding out how many computers are being

used is the next hurdle. Not only is there DoS, but also a more aggressive form (stated previously) known as
Distributed Denial of Service, or DDoS. While DoS is using a single internet connection, DDoS uses a collaboration
of “zombie” computers in order to create an army of illegitimate requests for the target.

While knowing about it is the most crucial part of countering a DoS attack, putting that information to good use is
where the hard part begins. With a lower level attack from an inexperienced hacker, it is possible to trace back the
requests to a computer in order to block the connection. Unfortunately, the majority of the time this is not the case.
Hackers are able to encrypt their connections in order to remain untraceable. One countermeasure to this is the use
of an overlay network. Dynamically, the user is connected to this network, where hop-by-hop routing is then used in
order to trace the source of the attack. The service, while effective, is very dangerous. The problem with this
countermeasure is that any slight error in it could cause total network disruption, essentially doing what it was
created to stop.

Getting back to more traditional methods of countermeasures, a simple monitoring for unauthorized system calls as
well as incoming/outgoing system connections on forbidden ports is the simplest way to check for DoS attacks.
Monitoring for unusual bandwidth is generally a dead giveaway of an attempted DoS attack, as the consumption will
be significantly higher. On a network level, the ability to filter malicious packets is a must. The filter can tell which
packets need to be discarded, and which are approved for connection.
Cookie Stealing

Cookie stealing is the process of using a cross-site scripting attack in order to steal cookies from a server. By using a
cookie stealing attack, it is possible to steal users usernames and passwords, and even gain administrator access.
 Valentino Vishnu wrote a wonderful online tutorial for the process where he uses a story and a forum that he hosts
to demonstrate how it all works. It starts with the administrator opening the forum with a welcome message, and
usual forum chatter from users follows. A malicious user then makes a comment of his own, but includes a line of
scripts as well. When the post is read from the forum the script does not show, only the message. This means that
unless the administrator looks at the source code for the post the line of script will go unnoticed. The script points to
the malicious users own server he has hosted that is running a hostel php script designed to record cookies. Once the
admin logs in our malicious user is able to capture that cookie and use specialized software to make changes to it. In
this case he went in and changed the session admin ID to his own. Once this was done, all that was needed was to
refresh the page and he was able to gain administrative access. This show just how easy and dangerous cookie
stealing attacks can be. With one line of script and minimal resources this malicious user was able to gain full access
to the server. This could have been avoided with some simple steps. For example, it is always a good idea to filter
user input to look for indicators like tags. The script tag is very easy to spot and filter out and can stop a wide range
of attacks.

Wrapping up

Malicious web attacks are constantly being countered, as new programming languages and software emerge,
however there is still no permanent solution to stop all attacks. Just as quickly as new countermeasures are created,
another malicious script is out there to break the barrier again. The steady advancement in countermeasure protocols
is sufficiently keeping the internet safe for the most part, but companies and independent with sensitive data alike
need always keep a close watch for the inevitable, relentless pursuit that is a vulnerability attack.

Computing Environment

In the LIS4774 Information Security class every student is assigned two virtual machines, one being Linux (Ubuntu
12.04) and the other being Windows 7, for this project our main concern is the Linux sever, on which we installed
Apache web server 2.2.2. A virtual machine (VM) is an emulation of a computers operating system. VM’s operate

based on the host computers architecture and function as a hypothetical computer, they are able to implement
specialized hardware, software or both. The Linux server is installed on a virtual private network (VPN) on a server
hosted by The Florida State University’s College of Communication and Information. Based on the operating
system of your personal computer you can access your VM through two different ways. If you are using a Microsoft
Windows operating system you can navigate to labs.cci.fsu.edu inside your favorite web browser. Once there you
have to login using your FSUid assigned to you by the school, then navigate to an application called VMconnect and
then choose you assigned VPN and log into your assigned VM. Furthermore, if you have Mac OSX operating
system you will need to download an application from the app store, Microsoft Remote Desktop, that lets you access
window servers.

Process to find vulnerabilities (part A)

Some of the first steps we took to get this project under way is to install an Apache web server, which is apart of
LAMP, on to our Linux VM’s. We used the command, sudo apt-get install php5 mysql-server apache2, this installs
LAMP (Ubuntu 12.04, Apache 2.2, MySQL, and PhP 5) onto our Linux VM’s. One of the first problems we ran into
was that we were told to move the extremeinsecure.zip and webhacking.zip using the command, sudo mv *.zip
/var/www, we used the command ls, which lists all the files with in your current working directory, and saw the files
missing. We then used the command, cd /var/www, to navigate our current working directory (CWD) to the file path
admin@4774vmx:/var/www, x being our VM number. Once again we used the command ls to view the files within
the CWD. We then saw that the files, extremeinsecure.zip and webhacking.zip as well as an html file, we needed
were in there. Our next step in the process was to unzip the extremeinsecure.zip file. In order for us to do this we
had to use the command, sudo apt-get install zip unzip, which installs an application that allows you to zip and
un-zip files. Our next step was to actually unzip the extremeinsecure.zip. In order to do this we used the command
sudo unzip extremeinsecure.zip ., which allowed us to unzip that file and place it in our CWD.

Now we had to start using Apache. The html file that was inside our CWD, admin@4774vmx:/var/www, was put
there by Apache and compiles all .htm and .php files. We then inspected inside the, now unzipped file,
extremeinsecure using ls extremeinsecure, which lists all the directories and files within the subdirectory
extremeinsecure without leaving our CWD. When we noticed the .htm and .php files we got the idea to move or
copy the extremeinsecure file into the html file. In order to move the file, you would use the command sudo mv
extremeinsecure html, then to copy it you just alter the mv in the previous command to cp.

Once we had the extremeinsecure file inside the html file it would compile them once executed using a web browser.
The resource we had at hand was Mozilla Firefox which is located on the same VPN as our VM’s, so the browser is
able to compile the files. We
navigated the browser to the IP
address to each of our own
individual IP addresses (figure 5),
this will bring up the default
Apache welcome page letting you
know that it works. With
everything coming together it was
almost time for us to search the
site for the vulnerability. We had
to tell the browser about the
extremeinsecure file containing the
.htm and .php files. From the home
page we navigated to the
extremeinsecure file and finally
brought up the sites home page
(figure 6).

Here we are finally at the site and its time for us to start our search for the vulnerability in the server. At first, we had
no clue where to start. It looked like a normal site, poorly designed though, and that we had no idea how to attack.
We went back and reread the direction
Process.php takes as input anything that is
entered in the text box in
products.htm and executes as a Linux
shell command.” We went to the text box
and entered a basic shell command and
behold in front of us was a slight
vulnerability pointing us the right
directions (figure 7). The last
directions we were given on “the results”
page was to type the command “; cat
PointsHere. Type” once we did that the final
page came up saying we had
successfully completed the project (figure
8).

Figure 8 Final results

Results

We were able to successfully use cross-site scripting to penetrate the weakness in the coding, more specifically the
process.php file which was running all commands as shell commands. Cross-site scripting allows attackers to bypass
all access controls, which can be very dangerous allowing a hacker into such restricted area.

Part A of this project has demonstrated that without proper prevention, attacks like this would occur a lot more
often. It also shows that because of probing testers we are able to detect these weaknesses and minimize them, which
is the most common countermeasure. This was a very basic attack held in a controlled environment where we can
learn how attackers use vulnerabilities in servers to attack and gain unauthorized access. The job of an information
security personal is never done, there is always something to improve on.

Countermeasures for SQL Injections attacks CJ

Process to Find a XSS (Part B)

The process for which we completed part b was similar to that of part a. We had to use a Linux server to prepare the
site before we could even start to attack it. In order to get started we used the command “cd /var/www,” this would
put us in the directory for our project once again. The first thing we had to to do was to unzip the webhacking.zip
file located within our CWD, to do this we used a similar command to what we used in part a which was “sudo
unzip webhacking.zip –d /var/www.” Our next step was to give all files within the directories ~/var/www/XSS and
~/var/www/script-attacks all the correct read and write permission, now since there was lots of files within these two
directories we went ahead and just used the commands “sudo chmod 777 /var/www/XSS/.php | sudo chmod 777
/var/www/XSS/.htm | sudo chmod 777 /var/www/script-attacks/*.htm | sudo chmod 777 /var/www/
script-attacks/*.php” this gave every file within those two directories with a .php and .htm file extension permission
to read, write, and execute. Once we had the files all set up we decided to at least take a look at the website and see
what it had going on, in this example I will use my personal VM IP address 192.168.1.17. We navigated to the
website using our own IP address assigned to us, with the file extension for the XSS folder, 192.168.1.17/XSS.
When the web page loaded it gave us a 404 error which we knew something was wrong with that.
Once again we returned to our Linux VM’s to take a closer look at the files and try to figure out the problem. We
then went into the XSS directory to change the links in the malURL.htm and redirectpage.htm, we were asked to use
VI to complete this task and with me personally I don’t have any experience with it we just used nano. The
commands we used to edit the files were “sudo nano malURL.htm and sudo nano redirectpage.htm.” Thinking this
would fix the problem we tried altering the the URL inside the .htm files in several variations. After several attempts
and fails we sought the knowledge of the internet and our peers to see if they could help us solve this problem. One
of our peers had the same problem and found the solution and helped us figure it out. The problem was from when
we did part a, the apache server was just looking in the directory ~/var/www/html for the files. In order to change
this we have to move our CWD to the apache’s directory and change its default directory. To get to the apache
server directory we used the command “cd ../../etc/apache2/sites-enabled,” inside there is a configuration file called
000-default.conf, the command “sudo cat 000-default.conf” lets us edit the document, afterwards we restarted
Apache with the command “sudo service Apache2 restart,” this finally fixed the problem and we were able to access
the website. We then went back and changed the URL’s inside of the malURL.htm and redirectpage.htm files.
Now that we had the site up and running we were able to start working on the XSS attack. This part was fairly
straight forward, once in the site we first set our cookie using the setgetcookie.htm, which we be disguised as a
normal sign up link in a normal link. We typed in a username and a password then proceeded to “set cookie” then

we clicked submit
username (Figure). After
doing that we clicked on
the stealcookie.php just
make sure we didn’t have
to do anything with it, it

